

Curriculum Vitae

Doh Yon Kim

+82-10-4849-7530

andrewdoyon@skku.edu

*Department of Electronic and Electrical Engineering
Sungkyunkwan University (SKKU), Republic of Korea*

EDUCATION

Sungkyunkwan University

B.S. in Electronic and Electrical Engineering

Double Major in Advanced Semiconductor Engineering

Suwon, Republic of Korea

Expected Aug. 2026

Gyeonggibuk Science High School

Specialized High School for Academically Gifted Students

Uijeongbu, Republic of Korea

Mar. 2017 – Feb. 2020

RESEARCH INTERESTS

Computer Architecture, Neural Processing Units, Hardware-Software Co-Design, FPGA-based Acceleration.

PROFESSIONAL EXPERIENCE

Rebellions (AI Chip Startup)

Seongnam, Republic of Korea

Hardware Engineer Intern – Tape-out Participation

Jun. 2025 – Present

- **NPU Memory Subsystem & NoC Analysis** (Oct. 2025 – Present)

- Developing an automated SRAM compiler to generate parameterized memory wrappers with built-in clock domain crossing logic and error protection, improving reliability for datacenter-scale NPUs.
- Analyzing on-chip mesh router topology to identify deadlock points; collaborating on architectural solutions for deadlock-free packet routing.

- **Hash Algorithm Accelerator** (Jun. 2025 – Oct. 2025)

- Led logic design in a three-person team to develop a SHA-512 accelerator using HLS and OpenCL, spanning from microarchitecture exploration to FPGA deployment.
- Achieved 2.4 GH/s throughput and improved performance-per-watt by 14.2% over the RTX 4080 via loop unrolling and dataflow pipelining.
- Architected a distributed system leveraging dual-FPGA clustering to scale throughput for high-volume client workloads.

PUBLICATIONS & PREPRINTS

Doh Yon Kim et al., “UAV-NAS: Novel UAV Identification using Neural Architecture Search on FPGAs”
IEEE Transactions on Industrial Informatics (Under Review).

- Designed the algorithms and HLS optimizations for a neural architecture search framework.
- Achieved 88.6% energy reduction compared to CPU implementations while maintaining real-time throughput.

ACADEMIC PROJECTS

Llama2.c Acceleration on FPGAs

Dec. 2024 – Aug. 2025

- *Finalist, Creative Innovation Research Program.*

- Investigated HLS optimization strategies to accelerate large language models on FPGA platforms, focusing on memory bandwidth bottlenecks.

High-Level Synthesis Library for Deep Learning

Dec. 2024 – Jul. 2025

- *Finalist, Co-Deep Learning Project.*
- Developed a modular HLS library to streamline the deployment of deep learning models, bridging the gap between software frameworks and hardware implementation.

TECHNICAL SKILLS

- **Languages:** Verilog, SystemVerilog, C/C++, Python, OpenCL, Tcl.
- **Tools & Frameworks:** Vivado, Vitis HLS, Synopsys VCS, Verdi, PyTorch.
- **Hardware:** Xilinx FPGAs (Alveo U250, Zynq), ASIC Design Flow.

HONORS, AWARDS & SERVICE

Joint Service Achievement Medal

Mar. 2024

Awarded by the UNC/CFC/USFK Commander (Four-Star General)

- Recognized for exemplary leadership in developing and executing the U.S. Army's CBRN response plan during joint training exercises.

KATUSA (Korean Augmentation to the U.S. Army)

Aug. 2022 – Feb. 2024

Sergeant, CBRN Non-Commissioned Officer in Charge (NCOIC)

- Served as a liaison and interpreter for U.S. Defense agencies (DTRA, DOE) and Republic of Korea military officials throughout the full term of service.